## Transformations of Functions: (Part 1)

## Horizontal Shifts:

If $g(x)=f(x+h)$ then the graph of $g$ can be obtained by shifting the graph of $f$ to the left by $h$ units. (subtract $h$ from every $x$ coordinate of the graph of $f$ ).

If $g(x)=f(x-h)$ then the graph of $g$ can be obtained by shifting the graph of $f$ to the right by $h$ units. (add $h$ from every $x$ coordinate of the graph of $f$ ).

Use a calculator to compare the graphs of
$f(x)=x^{3}, g(x)=(x+3)^{3}, h(x)=(x-3)^{3}$

Use a calculator to compare the graphs of
$f(x)=\frac{1}{x^{2}}, g(x)=\frac{1}{(x+4)^{2}}, \quad h(x)=\frac{1}{(x-5)^{2}}$

## Vertical Shifts:

If $g(x)=f(x)+k$ then the graph of $g$ can be obtained by shifting the graph of $f$ up by $k$ units. (Add $k$ to every $y$-coordinate of the graph of $f$ )

If $g(x)=f(x)-k$ then the graph of $g$ can be obtained by shifting the graph of $f$ down by $c$ units. (Subtract $k$ from every $y$-coordinate of the graph of $f$ )

Use a calculator to compare the graphs of
$f(x)=x^{2}, g(x)=x^{2}+4, h(x)=x^{2}-3$

Let $f(x)=\sqrt{x}$ and let $g(x)=\sqrt{x-2}+1$
Without graphing the functions, write a sentence that compares the graphs of $f$ and $g$.

## Reflections:

If $g(x)=-f(x)$ then the graph of $g$ can be obtained by reflecting the graph of $f$ across the $x$-axis. (Change the sign of every $y$ coordinate of the graph of $f$ )

If $g(x)=f(-x)$ then the graph of $g$ can be obtained by reflecting the graph of $f$ across the $y$-axis. (Change the sign of every $x$ coordinate of the graph of $f$ )

Use a calculator to compare the graphs of
$f(x)=x^{2}, g(x)=x^{2}+4, \quad h(x)=x^{2}-3$

Let $f(x)=\sqrt{x}$ and let $g(x)=\sqrt{x-2}+1$
Without graphing the functions, write a sentence that compares the graphs of $f$ and $g$.

## Stretching and Compressing:

Let $a$ be a positive real number
If $g(x)=a f(x)$ then the graph of $g$ can be obtained by stretching the graph of $f$ vertically if $a>1$. (Multiply every $y$-coordinate of the graph of $f$ by $a$ )

If $g(x)=a f(x)$ then the graph of $g$ can be obtained by compressing the graph of $f$ vertically if $0<a<1$. (Multiply every $y$-coordinate of the graph of $f$ by $a$ )

Use a calculator to compare the graphs of $f(x)=\sqrt[3]{x}, g(x)=2 \sqrt[3]{x}, \quad h(x)=\frac{1}{3} \sqrt[3]{x}$

Let $f(x)=\sqrt{x}$ and let $g(x)=-2 \sqrt{x+2}-1$
Without graphing the functions, write a sentence that compares the graphs of $f$ and $g$.

Below is the graph of a function $f$. On the blank graph provided, graph the equation $y=-f(x-2)+3$


